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ABSTRACT 

The following theorem is proven. Let M be a closed, orientable, irreducible 

3-manifold such that rank H1 (M, Z/pZ) > 3 for some prime p. Then either 

~r I (M) is virtually solvable or it contains a free group of rank 2. 

Introduction 

The purpose of this paper is to sharpen results of Shalen-Wagreich [9] and Tu- 

raev [11]. In Theorem 2.9 of [9] Shalen and Wagreich prove that if M is a 

closed, orientable, irreducible 3-manifold such that rankHl(M,Z/pZ) > 4 for 

some prime p, then 7rl (M) contains a free group of rank 2. The main result 

of the present paper is that if M is a closed, orientable, irreducible 3-manifold 

such that rankHl(M, Z/pT.) > 3 for some prime p, then either zrl (M) is virtually 

solvable or it contains a free group of rank 2. Combining this with results of 

Milnor [8] and Wolf [12], it follows that if M is a closed, orientable, irreducible 

3-manifold such that rankH1 (M, Z/pT.) _> 3 for some prime p, then either 7rl (M) 

is virtually nilpotent or it has exponential growth. This sharpens Shalen and Wa- 

greich's Proposition 4.1. It also sharpens Turaev's Remark 1.IV in [11]. There 

it is stated that if rankHl (M, Z/pZ) _> 3 for some prime p, then either ~rl (M) is 

virtually nilpotent or for a finite set of generators of 7rl (M) there is a real number 

c > 1 such that for n large enough the number of elements in ~h(M) of length at 

most n exceeds c "/l°s("). 
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The new ingredient in the present proof is the use of p-adic analytic groups. 

Here is an indication of how this is done. Let F = ~q(M), and let p be a prime 

as above. Let F1 = F, and for n > 1 let 

r . + l  = ((x, v)zp :x  • r ,  v, z • r . ) ,  

where (x,y) = x - l y - l x y .  It might be said that the Fn's form the p-adic lower 

central series of F. The indices on the F,,'s are chosen to agree with the notation 

of Lazard's [5], which, unfortunately, does not agree with the notation of Shalen 

and Wagreich's [9], where F = F0. The argument proceeds to the point where it 

may be assumed that F contains neither a free Abelian group of rank 2 nor a free 

group of rank 2. Results of Shaien and Wagreich lead to the further assumption 

that rank(F,,/F,,+l) = 3 for every n. After possibly replacing F by F~, Lazard's 

[5] shows that the completion F of F with respect to the Fn's is a p-adic analytic 

group of rank 3. A result in Baumslag and Shalen's [1] is used to show that F 

embeds in F. Thus after it is seen that the center of F is trivial, the adjoint 

representation of F on the Lie algebra of F gives a faithful finite-dimensional (in 

fact 3-dimensional) representation of F over a field of characteristic 0. The Tits 

alternative is then used to complete the proof. 

The first draft of this paper was written in ignorance of the paper [7] of Mess. 

The main result of this paper follows from Propositions 1 and 3 of [7]. This paper 

and [7] cover much the same ground, but [7] covers more. For example, under the 

hypotheses of Theorem 1.1 below Proposition 3 of [7] states that either ~r~ (M) 

is virtually solvable or there exists a prime p such that M has finite covers M ~ 

with r ankHl (M ~, Z/pZ)  arbitrarily large. The proofs in both papers use p-adic 

analytic groups. Mess uses results of Lubotzky in [6], while the present paper 

deals directly with Lazard's [5]. 

Since the first draft of this paper was written the book [2] by Dixon, du Sautoy, 

Mann and Segal appeared. It contains a fine exposition of the theory of p-adic 

analytic groups, and it can be used in place of Lazard's [5] for the purposes of 

this paper. One such way to apply [2] is as follows. Lines (1.2) and (1.4) easily 

show that {F,, : n = 1 ,2 ,3 , . . . )  is a p-congruence system as in Definition 6.1 of 

[2] for the group r in (1.3). The argument preceding line (1.3) can be extended 

to prove that the above p-congruence system is uniformly finitely generated as in 

Definition 6.2 of [2]. Theorem 6.3 of [2] now implies that F has a faithful p-adic 

linear representation. 
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It is a pleasure for me to here acknowledge helpful conversations with Hyman 

Bass, Jim Cannon and Bill Floyd. 

1. The theorem and proof  

THEOREM 1.1: Let M be a dosed, orientable, irreducible 3-manifold such that 

rankH1 (M, Z/pZ) _> 3/'or some prime p. Then either ~r~( M) is virtually solvable 

or it contains a free group of rank 2. 

Proof: Set F = 7r~ (M). Just as in the proof of Theorem 2.9 of [9], the proof will 

separate into two cases depending on whether F does or does not contain a free 

Abelian subgroup of rank 2. 

First suppose that F contains a free Abelian group of rank 2. By Proposition 

2.8 of [9], M is either a sufficiently large manifold or a Seifert fibered space. 

Suppose that M is sufficiently large. Combining the Sphere Theorem, given 

in Theorem 4.3 of [4], with the irreducibility of M shows that ~r2(M) = 0. Thus 

Corollary 4.10 of [3] implies that F is solvable or it contains a free group of rank 

2, as desired. 

Suppose that M is Seifert fibered. According to Theorem 12.2 of [4], F contains 

an infinite cyclic normal subgroup A such that F /A  is a Fuchsian group. Thus 

F /A  is isomorphic to a subgroup of the group of all isometrics of the hyperbolic 

plane. Since this latter group is isomorphic to the matrix group 01(1, 2), F /A  

satisfies the Tits alternative, Corollary 1 of [10], and so it easily follows that F 

does also. This concludes the proof of Theorem 1.1 if F contains a free Abelian 

group of rank 2. 

Henceforth assume that F does not contain a free Abelian group of rank 2. 

Furthermore, assume that F does not contain a free group of rank 2. It must be 

shown that F is virtually solvable. 

Recall from the introduction that F1 = F and for n _> 1 that 

where (x,y)  = x - l y - l z y .  These subgroups of I' are the same as those which 

appear in [9], but the indices do not agree. 

Theorem 2.9 of [9] implies that rank(r/r2) = 3. Lemma 1.3 of [9] implies that 

rank(r /rj) _ 3. As in the first sentence of this paragraph, Theorem 2.9 of [9] 

easily implies that r a n k ( r 2 / r s )  = 3 and r3 = (r2)2. 
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The following statement will next be proven by induction on n. 

(1.2) r a n k ( r . / r . + , )  = 3 and r . + ,  = ( r . h  for ~ > 1. 

Since the proof of (1.2) has just been completed for n = 1 or 2, assume that 

n > 2 and that (1.2) is true for n - 1: rank(r._l/r.) = 3 and r .  = (1",_1)2. 

Observe that rn-1  satisfies all the above assumptions satisfied by r .  Hence 

rank((r.-lh/(r.-1)3) = 3 and (P,-1)3 = ( r , )2 .  Thus to prove (1.2), it 

suffices to prove that 1`,,+1 = (1`,)2. 

It is clear that (Fn)2 C r ,+~,  so to prove that 1`,+1 = (r,,)2, it suffices to prove 

that r , ,+l c_ (F,,)2. In turn it suffices to show that (x,v) • (r,,)2 for all elements 

x • r and v • r, , .  Since rn  = (1",-1)2 by induction, it suffices to prove that 

(x ,(y ,w))  • ( r , )2  and (x,y p) • (rn)2 for all elements x • r and y,w • r,,_l. 
First consider the assertion (x, (y, w)) • ( r , )2 ,  where z • r and y, w • r , ,-1.  

Set z = w~ = y-~wy. Line (II.1.1.6.3) of [5] states that 

(x y, (y, z))(y z, (z, x))(z t, (x, y)) = 1. 

Since z- e r . _ l  and (~,y)  • r .  = ( r ._ , )~ ,  ( z - , (~ ,y ) )  • ( r . _ , ) 3  = (r . )~ .  

Likewise, (y',(z,x)) • (r , )~ .  Thus ( , , , ( y , z ) )  • (r , )2 .  Thus (r , )2  contains 

(x ' ,  (y, z))Y-' = (x, (y, z ' - ' ) )  = (x, (y, w)), as desired. 

Second consider the assertion (x, yP) • (rn)2, where x • r and y • Fn-1. Line 

(II.1.1.6.2) of [5] states that 

(~, yz) = (~, z)(~, y)~. 

Hence 
(x,~p) = (x, ~)(x, yp-1) ~. 

Since (x, yP-1) E F,, = (r,_~)2, it follows that 

(x, yP-1) ~ = (x,y p- l )  rood (r,,_,)3. 

Since (r._,)~ = (r.)~, 

(x,y p) = ( z ,y ) (z ,y  p- ' )  mod (r,,)2. 

Continuing in this way, 

(x,y p) - (x,y) p -= I mod (rn)2. 
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This completes the proof of (1.2). 

It is well-known and can be proven using commutator identities as above that 

(Fro, F , )  C_ Fro+, for all positive integers m, n. Thus the sequence of subgroups 

F1, F2, F3 , . . .  gives F the structure of a filtered group, as defined in (II.l.1) of [5]. 

Let w denote the filtration function of F as in [5]. 

Now let n be an integer with n _> 2. Since ( F , , F , )  C_ F2,, F , / F , + 2  is an 

Abelian group. Since r a n k ( r . / r . + l )  = 3, r a n k ( r . + l / r . + 2 )  = 3 and r . + ,  = 

(F,)2, it easily follows that (Z/p Z) 3. Thus if x is an element of F 

with w(x)  = n, then the image of x in r . / r .÷2 has order p2. Hence w(x p) = n+ 1. 

Because F2 satisfies all the above assumptions satisfied by F, the discussion in 

this paragraph gives the following by replacing F by F2 if necessary: 

(1.3) w(x) > (p - 1)- '  and w(x p) = w(x)  + 1 for every x E F. 

Replacing F by F2 causes another small difficulty in notation. If such a replace- 

ment is made, the filtration does not change - -  it is the filtration induced from 

the original group. The notation of (II.l.1) of [5] will be maintained regarding 

the subgroups F , .  Thus although the F , ' s  still form the p-adic lower central 

series of F, their indices are shifted by 1. 

In this paragraph it will be shown that F~o = 1, namely, 

(1.4) w(z)  < oo for every nontrivial element x in F. 

Corollary A1 of [1] will be used to prove this. It shows that since F is the 

fundamental group of an irreducible, orientable 3-manifold and F does not contain 

a free Abelian group of rank 2, every infinite-index subgroup of F generated by 

at most 2 elements is free (of rank at most 2). Since F does not contain a free 

group of rank 2, this free group must in fact have rank at most 1. Now let x be 

an element of F with w(x) = oo and let y be an element of F with w(y) < oo. 

The subgroup (z, y) of F generated by x and y has infinite index in F because its 

image in r/r  is cyclic and r a n k ( r . / r . + l )  = 3 for n > 2. Thus (x,y)  is infinite 

cyclic. However, the second assertion in (1.3) shows that the image of (x, y) in 

F/F~¢ is also infinite cyclic, and so the kernel of the canonical homomorphism 

from (x, y) to r/r  must be trivial, namely, z = 1. This proves (1.4). 

Observe that (1.3) and (1.4) imply that F is torsion-free. It easily follows that 

(1.5) the center of F is trivial 
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because any nontriviM element in the center of F and any element in F not in 

the subgroup generated by the first element generate a subgroup isomorphic with 

Z 2, which does not exist. 

By Definition (III.2.1.2) of [5], lines (1.3) and (1.4) show that F is a p-valued 

group. Furthermore, it has rank 3 because rank(I ' , , /Fn+l) = 3 for n > 2. Thus 

it is easy to see that the completion I" of I' with respect to the Fn's is also p- 

valued of rank 3. Line (1.4) implies that F embeds in I'. Proposition (III.2.1.8) 

of [5] shows that I" is p-saturated. Theorem (III.3.3.2) of [51 now shows that 

I" is a p-adic analytic group of rank 3. Section (IV.3.2) of [51 now associates 

to I" a 3-dimensional Lie algebra. The adjoint representation of I" on its Lie 

algebra obtains a 3-dimensional representation of 1" over a field of characteristic 

0. Line (1.5) easily shows that this representation is faithful. According to the 

Tits alternative, either F contains a free group of rank 2 or it is virtually solvable. 

This completes the proof of Theorem 1.1. II 

COROLLARY 1.6: Let M be a closed, orientable, irreducible 3-manifold such that 

rankH1 (M, Z/pZ) >_ 3/'or some prime p. Then either 7rl ( M)  is virtuMly nilpotent 

or it has exponential growth. 

Proof: This is an immediate consequence of Theorem 1.1 and Theorem 4.3 of 

[121 and the main theorem of [81. | 
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